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Abstract

This paper develops a framework for improving upon traditional regression meth-
ods to model discrete nonlinear dynamical systems. This framework is derived from a
branch of recurrent neural-networks called Echo State Networks (ESNs). This report
compares this methodology to the famous Sparse Identification of Nonlinear Dynamics
(SINDy) framework developed by Brunton et al. This investigation specifically analyzes
the Lorenz System as an example nonlinear and chaotic system. In the models inves-
tigated within this report, the Linear ESN model outperforms the SINDy algorithm
when noise in the system is sufficiently low. The SINDy algorithm is also far more
computationally intensive, requiring much more data to yield comparable results. In
addition, SINDy requires sampling of a numerical derivative of a signal. Using finite
difference methods amplifies any noise present in the signal, and thus, a direct, discrete
method for calculating a regularized derivative is proposed, based on the Total Varia-
tion Regularized Derivative (TVD).
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1 Introduction

Dynamical systems are a fundamental area of mathematical study, with deep applications in
disciplines such as physics, engineering, biology, and numerical economics [1]. These systems
are characterized by a set of underlying laws that determine behavior over time. The modeling
of dynamical systems has become increasingly important in recent years due to the growing
complexity of many real-world phenomena, as well as the exponential rise in computational
speed and parallelism to process them.

One of the primary challenges in modeling dynamical systems is developing methods
to accurately capture the evolution of these systems over time. This involves constructing
mathematical frameworks that capture the essential features of a system, developing numer-
ical methods to solve these models efficiently, and producing models that are resistant to
disturbances, such as noise. In this paper, we will provide a framework for a new method of
simulating discrete time dynamical systems and compare it to existing methods such as linear
regression, nonlinear regression and the SINDy framework developed by Brunton, Proctor
and Kutz et al. [2]. This new method was developed from a type of time-series machine
learning algorithm called Echo State Neural Networks (ESNs) [3].

This paper seeks to determine whether established algorithms like SINDy that rely on
computing a continuous-time model based on a numerical derivative of a system is more
effective than the discrete temporal information preserved within ESNs.

1.1 Echo State Networks

Echo State Networks (ESNs) are a type of recurrent neural network that have gained increas-
ing attention in recent years due to their ability to efficiently model and predict complex
time-series data [3]. ESNs are characterized by a fixed, randomly-initialized recurrent layer
that is trained using only a linear readout layer, making them computationally efficient and
easy to train [4]. This simplicity and efficiency make ESNs particularly useful for modeling
time-series data with high-dimensional inputs, such as speech or image data.

The key innovation of ESNs is the use of a randomly-initialized recurrent layer, known
as the ”echo state”. The echo state has fixed connectivity and weights, and is not trained
during the learning process. Instead, a readout layer is trained to produce the desired output
based on the current state of the echo state and the input at each time step. This approach
allows ESNs to model complex time-series data with minimal training, as the echo state acts
as a reservoir of information that can capture the temporal dynamics of the input signal.

ESNs have been successfully applied to a wide range of problems in speech recognition,
image classification, and time-series prediction, and have been shown to outperform tradi-
tional recurrent neural networks and other machine learning approaches in many cases [5].
Despite their success, however, ESNs remain relatively underexplored compared to other
types of neural networks, and there is still much to be learned about their behavior and
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capabilities.

This paper proposes a novel framework to lose the nonlinearity of Echo State Networks
and expand their dynamics to be modeled in a system-theory context. In the world of
controls engineering and continuous-time systems, it is useful to model systems in state-
space notation, denoted by the following:

x′(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

where x(t) denotes a vector of the state of a system and y(t) denotes a vector of ob-
servations of x(t). Unfortunately, traditional ESNs are inherently nonlinear and cannot be
adapted to fit this linear state-space continuous-time representation [6].

1.2 Sparse Identification of Nonlinear Dynamics (SINDy)

Sparse Identification of Nonlinear Dynamics (SINDy) is a data-driven algorithm for discover-
ing the underlying dynamics of a system from measured time series data [2]. It is particularly
useful for identifying sparse and interpretable models of complex nonlinear systems, where
the number of variables and interactions is large, but only a few dominant variables and
interactions are significant.

The SINDy algorithm starts by representing the system’s dynamics as a set of candi-
date functions, typically chosen from a library of known nonlinear functions. The algorithm
then uses sparse regression techniques, such as Lasso or Least Absolute Shrinkage and Selec-
tion Operator (LASSO), to identify the most important functions and their corresponding
coefficients.

The resulting sparse model provides a compact representation of the system’s dynamics,
which can be used for prediction, control, and analysis. SINDy has been successfully applied
to a wide range of systems, including fluid dynamics, chemical reaction networks, and neural
networks.

The SINDy algorithm has several advantages over traditional model-based approaches,
including its ability to handle high-dimensional systems with limited data, its interpretability,
and its flexibility to incorporate domain knowledge into the model. However, it also has
some limitations, including the need for a carefully chosen library of candidate functions, the
computational cost, and the potential for overfitting when the data is noisy or insufficient.
SINDy is a powerful tool for discovering and understanding the underlying dynamics of
complex nonlinear systems, and it is likely to have many applications in mathematics, physics,
engineering, and biology.
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1.3 Direct Method for Differentiating Noisy Signals

Total Variation (TV) regularization is a popular technique used in various fields, including
image processing and signal analysis, for denoising and smoothing noisy data while preserving
edges and details [7]. Specifically, this is the method that SINDy uses to differentiate noisy
data. In this context, the TV norm measures the total variation of the signal, which is defined
as the sum of the absolute differences between neighboring data points [2].

Total Variation Regularized Derivative (TVD) is a derivative-based regularization tech-
nique that utilizes the TV norm to estimate the derivative of a function from noisy measure-
ments. This technique is particularly useful in cases where the measured data is noisy and
the derivative is ill-defined or unstable. The TVD method seeks to minimize the TV norm of
the derivative of the function subject to the constraint that the estimated function matches
the measured data. The resulting optimization problem is typically solved using numerical
methods, such as gradient descent or proximal algorithms. TVD has been applied success-
fully in various fields, including image processing, signal analysis, and machine learning, for
tasks such as image denoising, deblurring, and super-resolution. TVD has also been used in
medical imaging for reconstructing images from noisy and incomplete data.

Compared to other derivative estimation techniques, TVD has several advantages, in-
cluding its ability to handle noisy data, its robustness to outliers, and its ability to preserve
sharp edges and details. However, TVD also has some serious limitations, including the need
for carefully chosen regularization parameters, the potential for introducing artifacts in the
estimated derivative, and often exceedingly slow gradient descent convergence.

This paper proposes a technique for developing new norms for differentiating noisy signals,
and doing so directly instead of iteratively. This method focuses on penalizing the l2-norm
of the second derivative while also enforcing the error between the antiderivative of the
computed derivative and the original function.
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2 Echo State Neural Networks

2.1 Traditional ESNs - Theory and Structure

Traditional Echo State Networks are inherently nonlinear systems that function with a group
of hidden neurons preserving temporal information and acting as a sort of memory for a
dynamical system [3]. Figure 1 depicts the structure of a traditional ESN.

Consider at state uk that we are trying to model. This uk can be observed with some
observation function to extract pertinent details, like quadratic or sinusoidal nonlinearity to
form ũk. This vector is then fed into a reservoir of interconnected neurons, whose states are
described as xk, with weightsWin. Once the input has been added to the state x, a transition
matrix, W, maps xk to itself. The dimension of x is independent of the system and can be
chosen to be as large as is computationally feasible. A nonlinear activation function, usually
tanh(x), is applied to the state xk. Finally, a proportion of the previous state of xk and an
inverse proportion the updated state after the input, transition and activation is applied to
form xk+1. Lastly, xk+1 is combined with uk to solve a least squares regression problem to
find uk+1. This is formalized in the following:

Definition 1. uk is mapped to uk+1 with the following algorithm.

ũk = f(uk)

xk+1 = αxk + (1− α) tanh(Wxk +Winũk)

uk+1 =
[
Wx Wu

] [xk+1

ũk

]
α is a term used to quantify the leaking rate, or the extent that previous states of x are

incorporated into the next state.

In the literature, W and Win are chosen randomly, satisfying that the spectral radius,
ρ, of W is less than 1 [3]. This tends to be the large advantage of Traditional ESNs because
these weights between the echo state neurons do not have to be trained. This paper is
focused on improving upon this framework and optimizing these weights to accurately model
dynamical systems. A limitation of this model in the world of controls and understanding
the dynamics is its inability to be represented as a single transition matrix because of the
nonlinear tanh term. Further, the inputs to x cannot vary significantly in scale because of
this nonlinearity; if these values are too large or small, tanh will simply scale them to 1 or 0,
making the flexibility of this method to model diverse initial conditions low.
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Figure 1: Structure of a Traditional ESN.

2.2 Linear Adaptation of ESNs

To remove some of these problems with nonlinearity and scale, we remove the nonlinearity
of the algorithm.

Definition 2. Consider the following linear version of the Traditional ESNs described in
Definition 1.

ũk = f(uk)

xk+1 = Wxk +Winũk

ũk+1 =
[
Wx Wu

] [xk+1

ũk

]
With this, we can combine the states of x and ũ to form one dynamical system.
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Theorem 1. A new state, Zk, can be formed combining states xk and ũk:

Zk =

[
xk

uk

]
We can write a full transition matrix to map Zk to Zk+1:

Zk+1 = BZk

B =

[
W Win

WxW WxWin +Wu

]
Proof.

uk+1 =
[
Wx Wu

] [xk+1

ũk

]
= Wxxk+1 +Wuũk

xk+1 = Wxk +Winũk

uk+1 = Wx(Wxk +Winũk) +Wuũk

= WxWxk +WxWinũk +Wuũk

= WxWxk + (WxWin +Wu)ũk[
xk+1

ũk+1

]
=

[
W Win

WxW WxWin +Wu

] [
xk

ũk

]

2.3 Differences between Linear and Traditional Echo State Net-
works

It is important to identify the differences between the Linear ESNs developed in this paper
and what is described in the existing literature. The following is a summary of the major
differences:

• Traditional ESNs are nonlinear. The Echo State neurons outlined in the literature
are updated with the following formula:

xk+1 = α · xk + (1− α) · tanh(Wxk +Winuk)

In this methodology the α term is expressed in the W matrix and there is no nonlin-
earity in updating the Echo State, xk. Recall how the Echo State neurons are updated
in this paper:

xk+1 = Wxk +Winũk
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• Traditional ESNs do not use observables. The observed state variable ũk is not
explicitly used in the literature.

• Traditional ESNs require binary input scaling. In order for the tanh() term to
vary consistently and not stay at 1 or -1, the inputs to the Echo State need to be of
the same magnitude. The networks developed in this paper do not depend on this
condition, making them more flexible.

2.4 Iterative Optimization Algorithm for Linear ESNs

With the framework shown in Theorem 1, if we have enough snapshots of xk and ũk, we can
solve for this matrix B with regularized linear regression. This is tricky, however, because x
is entirely dependent on u and is tricky to form. This forms the fixed-point iteration that is
used within this paper to optimize the weights W and Win so that the system is optimized
to match whatever dynamics are present. Consider we have two matrices Z0 and Z1 that are
formed with snapshots of the system as follows:

Theorem 2. Consider the following fixed-point iteration. The algorithm is initialized by
solving a simple least squares regression with a Moore-Penrose Pseudoinverse. Consider two
matrices Ũ1 and Ũ0 which form N snapshots of the state, u, after being passed through the
observation function:

Ũ0 =

 | | |
ũ0 ũ1 ... ũN−1

| | |

 , Ũ1 =

 | | |
ũ1 ũ2 ... ũN

| | |


We can solve the system for some transition matrix, A that maps Ũ0 to Ũ1:

AT = ŨT
1 (Ũ

T
0 )

†

Where (ŨT
0 )

† represents the Pseudoinverse of ŨT
0 . From this result, we can initialize our

matrix of hidden states, X1 as the error of this linear system:

X1 = Ũ1 −AŨ0

We can form X0 by adding on a column of zeros to X1 and removing the last column of
X1. With these matrices formed, we can form the larger matrices Z0 and Z1:

Z0 =

[
X0

Ũ0

]
, Z1 =

[
X1

Ũ1

]
From this, we can solve for B. It is a good idea to use some form of ridge regression to

prevent overfitting. So find a B such that:
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||Z1 −BZ0||22 + β||B||22

is minimized. With this new B matrix formed, we can simulate the system again, using
the following:

Zk = BkZ0

Simulating the system again, we obtain new values for xk which are used to form new X0

and X1 matrices. These new X0 and X1 matrices are used along with Ũ1 and Ũ0 to form
new Z0 and Z1 which can be used to solve for a new B. This process can be repeated until
some convergence criterion is met.

This method will be used to optimize the weights to get the best fit possible to nonlinear
dynamics. It should be noted that as a fixed-point iteration, sometimes the Jacobian of the
system around the fixed point becomes larger than 1; this means that the system jumps
around the fixed point but does not converge. I was not able compute the Jacobian by hand,
but an area of further research would be perhaps using autodifferentiation software found in
many neural network packages to compute either a Jacobian for Newton’s method or some
gradient descent scheme. Other optimization strategies such as genetic algorithms may prove
helpful as well.

2.5 Application to the Lorenz System

In the field of nonlinear modeling, the Lorenz system is an influential mathematical system
[8]. Introduced by Edward N. Lorenz in 1963, this system exhibits highly chaotic behavior
and serves as a canonical example of a deterministic system that is exceedingly sensitive to
initial conditions. The Lorenz system’s intrinsic complexity has motivated mathematicians,
physicists, and researchers across a wide range of disciplines, oftentimes offering profound
insights into the study of chaos theory and the broader understanding of nonlinear dynamical
systems.The Lorenz System is characterized by the following system of differential equations:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

This system is of quadratic nonlinearity which means it is impossible to put the dynamics
into purely linear State-Space Notation without some sort of modification. Hence, it is cru-

cial to observe the state, u =
[
x y z

]T
, in such a way as to include these nonlinear terms.
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This is performed with some candidate functions that try to guess what type of behavior the
underlying dynamics exhibit. Candidate functions might be polynomial functions, exponen-
tial functions, logarithmic functions, or sinusoidal functions. The bottom line is that we are
trying to capture the essence of the nonlinearity in these candidate functions.

Definition 3. The Lorenz System is of quadratic nonlinearity, so we can use a set of candi-
date functions of order 2 multiplying every combination of x, y, and z. This is accomplished
with the MATLAB Code in the Appendix, which can produce polynomial combinations of any
order given any input. This observed ũ is as follows:

ũ =
[
x y z x2 xy xz y2 yz z2

]T
Moving into initial conditions so others can replicate this demonstration, we used con-

stants σ = 10, ρ = 28, and β = 8/3, a timestep h = 0.005 and initial conditions u0 =[
−8 7 27

]T
. First, we simulate a set of training data using the underlying differential

equation and add normally distributed noise to the training data with mean 0 and standard
deviation 0.05. We then apply the observable function from Definition 3 to each state in this
dataset. Next, let us examine what happens when we solve the first step of the iteration in
Theorem 2, that is solving:

AŨ0 = Ũ1

And, subsequently, simulate the dynamical system using the following:

ũk+1 = Aũk

Note that all nonlinear terms are accounted for, and this should be able to approximate
the dynamics for at least some period of time. The approximation of the least squares
regression with the nonlinear observables is shown in Figure 2.

As shown by the figure, the least squares regression does not accurately capture the
dynamics. However, after a few tries, running the iteration described in Theorem 2 converges
on the blue line shown in Figure 3.

As shown in Figure 3, the Linear ESN with the iterative method described in Theorem
2 has the ability to match the unstable dynamics with near-perfect accuracy. As we turn
up the noise level, the dynamics become more difficult to match, however the algorithm can
still match noisy samples for an initial period of time. If we modify the noise term to have a
standard deviation of 0.5 (10x the current value), Figure 4 illustrates the predicted dynamics
by the Linear ESN model with a noisy input signal. Notice how the dynamics do not match
nearly as well, indicating how the x state may be sensitive to perturbations from noise.
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Figure 2: Least Squares Regression model of Lorenz System with nonlinear observable terms.

Figure 3: Linear ESN model of Lorenz System with nonlinear observable terms.
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Figure 4: Linear ESN model of Lorenz System with nonlinear observable terms (Noise stan-
dard deviation=0.5).

3 Sparse Identification of Nonlinear Dynamics (SINDy)

Algorithm

3.1 Introduction

The Sparse Identification of Nonlinear Dynamics (SINDy) algorithm was developed by Stephen
Brunton, Joshua Proctor, and J. Nathan Kutz in 2016 as a method to recover governing equa-
tions from data [2]. In the pursuit to understand complex dynamical systems, traditional
modeling approaches often rely on physical laws or assumptions that may not capture the
full complexity of the underlying dynamics. SINDy, on the other hand, offers a data-driven
framework that enables the discovery of governing equations directly from observational data,
providing a powerful tool for system identification and model discovery.

The main idea behind SINDy is to leverage the inherent sparsity of the governing equa-
tions in many real-world systems. By assuming that the true governing equations can be
represented by a small number of significant terms, SINDy formulates the problem as a
sparse regression task. Given a set of measurements from the system, the algorithm system-
atically constructs a series of candidate functions comprising potential terms in the governing
equations. These functions can include nonlinear terms, spatial derivatives, and other rele-
vant mathematical expressions. Through a process of sparse regression, SINDy then identifies
the most parsimonious set of terms that best describe the system’s dynamics.

Since its introduction, the SINDy algorithm has found applications in fields such as
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physics, engineering, biology, and finance. It has proven particularly advantageous in sce-
narios where data is abundant, but the underlying equations are unknown or difficult to
obtain. By providing interpretable and sparse models, SINDy offers valuable insights into
the underlying dynamics, uncovers hidden relationships, and facilitates system prediction
and control.

This section aims to provide a comprehensive overview of the SINDy algorithm, its theo-
retical foundations, implementation techniques, and limitations. We explore the algorithm’s
effectiveness in recovering governing equations from noisy and limited data, discuss the con-
siderations for model selection and hyperparameter tuning, and highlight the strengths and
weaknesses of the SINDy framework.

The SINDy algorithm has emerged as a groundbreaking approach for uncovering gov-
erning equations directly from data. Its ability to exploit the sparsity inherent in complex
systems has revolutionized the field of data-driven modeling. As we delve deeper into the
intricacies of complex dynamical systems, SINDy offers an invaluable tool for understanding,
predicting, and controlling the behavior of diverse systems.

3.2 Mathematical Framework

The SINDy framework assumes that all dynamical systems can be modeled in terms of their
derivatives in the following general form:

d

dx
x(t) = f(x(t))

Similarly to the ESN framework, we use a matrix of snapshots of x over a given time,
the only difference being we also need to sample the derivative of x. This can be illustrated
as:

X =

 | | |
x1 x2 ... xN

| | |

T

, Ẋ =

 | | |
ẋ1 ẋ2 ... ẋN

| | |

T

And then the library of nonlinear candidate functions can be modeled by Θ(X). These,
like the ESN candidate functions are truly up to the user. The more functions, the more
computational cost, but the higher probability that the model will find the correct governing
equations. An example of Θ(X) might be:

Θ(X) =
[
1 X XP2 XP3 ... sin(X) ... ln(X) ... eX

]
In this case, like the ESN observables, P2, P3 and so on represent polynomial combinations

of a certain order as described in Definition 3. Once this matrix of candidate functions
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evaluated at every single datapoint is formed, the following sparse regression equation can
be solved:

Ẋ = Θ(X)Ξ

where Ξ is a matrix of weights that shows how many variables of Θ(X) are present in
the dynamics. The sparse linear regression involves some sparsity parameter, λ, to cut off
terms that are not very present. The idea is that the least squares regression is solved and
an initial Ξ is obtained. Then, every term in Ξ that is less than λ is set to zero. And the
least squares regression is repeated, but only onto the terms that have not been set to zero.
This process is repeated until only a handful of terms are remaining and the rest are zero.

Possibly the most overlooked component of this algorithm is the ability to sample the
derivative. The original SINDy paper introduced noisy signals into their analysis and illus-
trated how the model still held up reasonably well with various noise-levels. However, to
smooth the noise, the authors used the TVD algorithm described in the introduction. This
is an incredibly computationally costly algorithm to run at the scale that it was used in this
paper, having hundreds of gradient descent steps involving matrices of size 100,000 x 100,000
individually for the x, y, and z coordinates. More on this in Section 3.4.

3.3 Rediscovering Dynamics of the Lorenz System

The original SINDy paper simulates the Lorenz System with the same initial conditions and
constant values as were used in the ESN section of this paper. However, the original paper
uses quite a bit more data. This original paper uses a time-step, h = 0.001 and simulates
until t = 100. With these initial conditions and the same initial level of noise (normally
distributed with mean 0 and standard deviation 0.05), the SINDy algorithm produces the
following Ξ matrix:

Table 1: Computed Ξ Values and Corresponding Functions
x y z x2 xy xz x2 y2 z2

ẋ -9.9593 9.9599 0 0 0 0 0 0 0
ẏ -27.6647 -0.9337 0 0 0 -0.9906 0 0 0
ż 0 0 -2.6534 0 0.9951 0 0 0 0

Table 2: Theoretical Ξ Values and Corresponding Functions
x y z x2 xy xz x2 y2 z2

ẋ -10 10 0 0 0 0 0 0 0
ẏ -28 -1 0 0 0 -1 0 0 0
ż 0 0 -8/3 0 1 0 0 0 0
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As shown in Tables 1 and 2, the SINDy algorithm recovers quite close approximations to
the underlying dynamics. The question, now, is how do these underlying dynamics compare
to the real thing when simulated? The newly simulated system is depicted in Figure 5.
Interestingly, it was only able to follow the dynamics until about t = 5 before it diverged.

Figure 5: Computed SINDy model of Lorenz System (Noise standard deviation=0.05).
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3.4 Limitations of the SINDy Framework

As alluded to in the previous section, the data and its derivative are both 3x100,000 double-
precision matrices. Further, the candidate function matrix, Θ(X), will scale even higher
than this. Let’s say one wanted to examine polynomials up to degree five, as is described in
the original SINDy paper. This would produce a Θ matrix of size 55 x 100,000. If the state
had dimension 4 instead of dimension 3, this matrix would be 125 x 100,000. This matrix
would take up 100 gigabytes of memory. So without a proper scaled computing system, this
method has a significant barrier to entry for recovering system dynamics.

Indeed the 16-core 4.2 GHz machine used for this project with 32gb of RAM had quite
a bit of trouble just simulating a ground-truth reference of the system when it already had
the underlying dynamics! As mentioned previously, the TVD algorithm via gradient descent
proved to be so costly for one machine, that I instead formulated a direct method to solve for
the derivative in chunks instead of the gradient descent computation (discussed in Section
4).

Further, the SINDy algorithm had nearly 17x more data points than the Echo State
Network was given, a timestep that was 5x smaller and still produced a less accurate result
than the Echo State Networks. Now, much of the utility of the SINDy framework comes in
recovering semantic information about governing dynamics, but this is evidence of the power
of Linear ESNs to model complex dynamical systems with a much lower training cost.

4 Direct Method for Differentiating Noisy Signals

As described earlier, the differentiation of noisy signals is crucial to the accuracy of the
SINDy algorithm. In this paper, we will consider existing methods and a novel method to
compute these derivatives efficiently and accurately. Consider a function f(x) = |x| + ϵ(x)
as an example with a simple, but discontinuous derivative, where ϵ(x) represents the noise
in the function. In this example, it will be normally distributed with mean 0 and standard
deviation 0.02. This produces the following reference plot shown in Figure 6.

If we wish to differentiate this function, Figure 7 illustrates just how useless a finite
difference approximation of the signal is.

The absolute value function is an example where convolutional smoothing struggles be-
cause of the discontinuous derivative jumping from -1 to 1. Kernel-smoothing algorithms
take weighted averages of the function across a moving window of points. This makes such a
discontinuity difficult to achieve. A popular method for smoothing noisy signals is something
known as Savitzky-Golay (SG) filtering [9]. This method is useful when the function has a
continuous derivative, but Figure 8 illustrates how the function loses the sharpness of the
jump discontinuity of the derivative of the absolute value function, while it does provide a
better approximation. This is important to preserve in functions that have sharp changes
in slope, even if they are continuous, like the Lorenz system studied in this paper. Another
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Figure 6: Plot of reference function, f(t) = |t|+ ϵ(t)

Figure 7: Finite Difference Approximation of f ′(t).

setback is the dimensionality loss of convolution. To achieve sufficiently smooth results,
Savitsky-Golay filtering has to reduce the dimensionality by the window-size, leading to a
reduction in useful derivative data. In Figure 8, the algorithm simply pads the computed
derivative with duplicates of the first and last value.
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Figure 8: Savitsky-Golay Filtering Approximation of f ′(t).

4.1 Modifying the TV-Norm

The current TVD algorithm [7] proposes the following cost-function in terms of the derivative,
u, of a function f on some interval [0, L]:

R(u) = α

∫ L

0

|u′(t)|dt+
∫ L

0

|f(t)−
∫ t

0

u(s)ds|dt

This function penalizes the absolute value of the second derivative, u′(t), in the first term
and the difference between the function and the antiderivative of the derivative in the second
term.

However, a discrete-time implication was not directly described in the paper describing
this method, the literature does not give direct implementation for the discrete time case,
but simply mentions that gradient descent is the most effective way to target a good approx-
imation of the derivative. Not only this, but the paper cites having to perform thousands of
gradient descent steps to reach convergence, which is not only computationally costly, but
also severely limits the ability to determine an optimal regularization parameter. This is
where the work in this paper begins. Consider the following modified cost function:

R(u) = α

∫ L

0

u′(t)2dt+

∫ L

0

(f(t)−
∫ t

0

u(s)ds)2dt

This new cost function that uses a sort of ridge regularization instead of a lasso allows
us to make some generalizations. Let us consider a discrete case of dimension 4. In this
case, we wish to solve for some vector derivative u ∈ R4. Next, it is important to use some
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linear operator to approximate the derivatives and antiderivatives of this vector u. We can
calculate a finite difference derivative using the following matrix, D:

u′ ≈ Du

u′
1

u′
2

u′
3

 =
1

h

−1 1 0 0
0 −1 1 0
0 0 −1 1



u1

u2

u3

u4


Notice how with the act of differentiation the dimension of the finite difference derivative

decreases by 1. Similarly, we can form a linear operator, L, to aproximate the antiderivative
using the trapezoidal integration rule. ∫ L

0

u dt ≈ Lu

L =
h

2

1 1 0 0
1 2 1 0
1 2 2 1


Now that we have formed these matrices, we can rewrite our cost function R in terms

of these discrete operators. For both terms we can simply write them as an inner product
of the second derivative to calculate magnitude of the second derivative and the difference
between the underlying function and antiderivative.

4.1.1 A note on conditioning f

Because the antiderivative and finite difference operators, L and D, lower the dimensionality
of u by 1, in order for the dimensions to match up in the following computations, f must
also have its dimension reduced by 1. This was accomplished by linear interpolation halfway
between the values of f . It is also important to ensure that f begins at zero. Implementing
a nonzero f0 value into the algorithm is far messier and, in practice, it is simpler to just force
f to begin at zero and then add f(0) onto the computed antiderivative. In the case where
f ∈ R4, this can be written as:

f =
1

2

1 1 0 0
0 1 1 0
0 0 1 1



f1
f2
f3
f4

− f(0)

If the timestep, h, is sufficiently small, this barely alters the function values. Now for the
main algorithm in this paper.
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Definition 4. We can define the following cost function for the discrete-time case.

R(u) = α(Du)T (Lu) + (f − Lu)T (f − Lu) (1)

Theorem 3. The regularized derivative can be directly computed by solving the following
linear system:

(αDTD+ LTL)−1LTf = u (2)

Proof. We can expand (1) to yield the following:

R(u) = αuTDTDu+ fTf − 2uTLTf + uTLTLu

We can then compute the gradient with respect to u of the cost function:

∇Ru = 2αDTDu− 2LTf + 2LTLu

We wish to minimize R(u), so we set the gradient equal to zero. This is a linearly solvable
system:

0 = 2αDTDu− 2LTf + 2LTLu

LTf = (αDTD+ LTL)u

(αDTD+ LTL)−1LTf = u

We can enforce a local minimum with our choice of α. The Hessian of the R can be
computed as:

∇2Ru = 2αDTD+ 2LTL

The DTD term is a tridiagonal matrix with negative values on the super and sub di-
agonals. As long as α is sufficiently small to lower the magnitude of these negative values
enough to be cancelled by LTL, which is an entirely positive matrix, then the solution to (2)
will be a minimum. Further, the matrix (αDTD + LTL) is full rank which means u has to
be unique.

If u ∈ RN , solving this linear system will take something like O(N3) steps to solve; hence,
if N is large, the signal can be split into intervals to reduce computational cost. A plot of the
approximated derivative with α = 5 · 10−8 is shown in Figure 9. This illustrates a significant
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improvement in both the smoothness of the line and the preservation of sharp change in
continuity.

Not only this but choosing an optimal value of α can be done by creating an L-Plot. On
the y-axis, is the error between the original function and the antiderivative of the computed
derivative and on the x-axis is the magnitude of the computed second derivative. In other
words, y = (f − Lu)T (f − Lu) and x = uTDTDu. This produces a distinct L-Shape and
the optimal α can be chosen at the elbow of this shape. This is depicted in Figure 10. It
should be mentioned that computing the derivative of the absolute value function (with its
discontinuity, zero concavity, and noise) is difficult; we saw earlier how poorly SG-filtering
performed on the data and the performance of this direct method should be shown on a
function with a continuous derivative that has some concavity to it as well.

Figure 9: Derivative approximation penalizing the magnitude of the second derivative of the
function.
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Figure 10: L-Plot of error vs. magnitude of second derivative term.

4.2 Sinusoidal Example

To illustrate the versatility of this method, consider one more example with a sinusoidal wave
instead of a simple absolute value function. Consider the following function and correspond-
ing derivative:

f(t) = sin(10t) + ϵ(t)

f ′(t) = 10 cos(10t)

This produces the line in Figure 11. Once again, Figure 12 illustrates the amplified noise
in the finite difference approximation. Next, Figure 13 illustrates the direct method for the
regularized derivative. In this case, when the derivative is smooth, the Lastly, the L-Plot to
choose the optimal α is shown in Figure 14.
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Figure 11: Noisy Sine Function.

Figure 12: Noise in finite difference approximation.
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Figure 13: Regularization method implemented with α = 5 · 10−7.

Figure 14: L-Plot of error vs. magnitude of second derivative.
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5 Conslusion and Discussion of Results

This paper investigates a novel method for modeling dynamical systems that originated
from a recurrent neural network technique, known as Echo State Networks. This technique
functions by augmenting information about the state of a dynamical system with a series of
memory states that capture information about the current state and also retain information
about previous states. This idea was adapted into a linear discrete-time dynamical system
and an iterative algorithm was produced to optimize the weights that map the input into this
hidden layer of nodes. This algorithm still needs fine-tuning, and possible areas of further
research include autodifferentiation techniques to compute a Jacobian or gradient of some
cost function, or other optimization strategies. However, this paper illustrates the power
that ESNs have to accurately model chaotic systems, like the Lorenz Attractor System, even
when they have some noies. When the systems have too much noise, the model does a worse
job at accurately reproducing the dynamics.

The SINDy algorithm was used to recover the Lorenz System from data. While this did
produce decent approximations of the active nonlinarities in the system, it did not model the
system nearly as well as the Linear ESN did, even when it had exceedingly more training
data. Not only this, but at the resolution necessary for generating good estimates of coeffi-
cients, the SINDy algorithm is extremely computationally costly and the library of candidate
functions scales exponentially when analyzing more complex functions. In addition, the need
to compute the derivative is a significant challenge to the SINDy algorithm. This calls for
a much more efficient method to compute derivatives from data which brings us to the last
section of this project.

The Total Variation Regularized Derivative (TVD) algorithm is effective for computing
the derivative of noisy signals while preserving sharp edges and detail. That said, it is
extremely computationally costly. At the scale required to smooth the derivatives in the
SINDy required, it was taking multiple minutes to complete one step of gradient descent,
and the literature claimed that it needed on the order of 10,000 steps to converge. Further,
this computational cost makes it nearly extremely time-consuming to compare a wide range of
regularization parameters. The method proposed in the last section of this paper modifies the
TV-Norm discussed in Rudin et al. and develops a discrete optimization framework where the
derivative becomes directly solvable as a linear system. Not only does this outperform many
popular modern filtering methods, such as Savitsky-Golay Filtering, it is also much faster
to compute than the gradient descent method. For functions with strange concavities and
jump discontinuities in their derivatives, such as the absolute value function, the algorithm
gives a respectable approximation of the derivative. However, this algorithm really shines
when the derivative is smooth and continuous. As illustrated in Figure 13, the algorithm
nails the derivative of a sine wave, even with a significant amount of noise. Not only this, but
because the algorithm is so much faster, we can compute approximations for many different
regularization parameters and produce L-Plots to determine the optimal value. This is a
huge advantage over the existing TVD algorithm.
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7 Appendix

7.1 Lorenz System Ground Truth Function

function dsdt = lorenz(S)

% Constants
sigma = 10;
rho = 28;
beta = 8/3;

% Computing Derivative
dsdt = [sigma*(S(2,:)−S(1,:));...

S(1,:).*(rho − S(3,:))−S(2,:);...
S(1,:).*S(2,:)−beta*S(3,:)];

end

7.2 Polynomial Combination Function

function out = polycomb(vec, order)
n = length(vec);
out = vec;
for i = 2:order

combs = unique(nchoosek(repelem(1:n,i),i), 'rows');
newVec = zeros(size(combs,1),1);
for j = 1:size(combs,1)

newVec(j) = prod(vec(combs(j,:)));
end
out = [out; newVec];

end
end
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7.3 Computing Lorenz System Ground Truth

clear; clf();
%warning('off');
h = 0.005;
tspan = 0:h:30;
y0 = [−8; 7; 27];
func = @(t, S) lorenz(S);
options = odeset('RelTol',1e−10);
[t, Utrue] = ode45(func,tspan,y0,options);
Utrue = Utrue';

eps = 5e−1;
Noise = random('normal',0,1,size(Utrue));
UNoise = Utrue + eps*Noise;
UNoise(:,1) = Utrue(:,1);

figure()
plot(t', UNoise(1,:)); hold on;
plot(t', Utrue(1,:)); hold on;
title("Ground Truth X Coord. vs. Time Plot for Lorenz System")
xlabel("Time");
ylabel("X−Coordinate");
grid on; legend("Noisy U", "True U");
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7.4 Least Squares Approximation with Observables

order = 2;

Uvec = zeros(size(polycomb(UNoise(:,1), order),1), size(UNoise,2));

for i = 1:size(UNoise,2)
Uvec(:,i) = polycomb(UNoise(:,i), order);

end

% Initializing our Steps
U0 = Uvec(:,1:end−1);
U1 = UNoise(:,2:end);

% Solving for Transition Matrix

C = (U0') \ (U1'); C = C';

lambda = 0.05;
for k=1:25

smallinds = (abs(C)<lambda); % find small coefficients
C(smallinds)=0; % and threshold
for ind = 1:3 % n is state dimension

biginds = ¬smallinds(:,ind);
% Regress dynamics onto remaining terms to find sparse Xi
C(biginds,ind) = ((U0(biginds,:)')\(U1(ind,:)'))';

end
end

% Seeing how good the initial fit is
Upred = zeros(size(U1));
Upred = [y0 Upred];
for i = 1:size(U0,2)

Upred(:,i+1) = C*polycomb(Upred(:,i),order);
end
time cutoff = 2000;
figure();
plot(t(1:time cutoff), Upred(1,1:time cutoff));
hold on;
plot(t(1:time cutoff), UNoise(1,1:time cutoff));
grid on;
xlabel("Time (s)", "FontSize",15);
ylabel("X−coordinate of Lorenz System", "FontSize", 15);
title(["Simulation of Ordinary Least Squares", "Regression of Lorenz ...

System with", "Nonlinear Observables"], "FontSize", 15);
lgd = legend("Predicted Values", "Ground Truth");
lgd.FontSize = 15;
lgd.Location = "southeast";
ylim([−25 20])
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7.5 Computing ESN Fixed-Point Iteration

figure();
alpha = 1e−3;
lambda = 0e−8;
beta = 5;
warning('all');
for k = 1:100

% Making Z Matrices

Z0 = [X(:,1:end−1); U0];
Z1 = [X(:,2:end); Uvec(:,2:end)];

% Making L Matrices

Z0 = [Z0'; lambda*eye(size(Z0,1))];
Z1 = [Z1'; zeros(size(Z1,1))];
B = (Z0) \ (Z1);

% B = B';

% Extracting sub−matrices
n = size(X,1);
p = size(Uvec,1);

%alpha = alpha * 0.95; %*norm(linspace(5,0,800).*(UNoise(:,1:800) − ...
Upred(:,1:800)), 'fro');

[U, S, V] = svd(B(1:n, 1:n));

S(S > beta) = beta;
if (S(1,1) < beta)

S(1,1) = beta;
end

W = alpha * (U*S*(V')) + (1−alpha)*W;
Win = alpha * B(1:n, n+1:end) + (1 − alpha)*Win;

for i = 1:size(U0,2)
X(:,i+1) = W*X(:,i) + Win*polycomb(UNoise(:,i),order);

end

Wout = ([X(:,2:end); U0]') \ (U1'); Wout = Wout';
Wx = Wout(:,1:n); Wu = Wout(:,n+1:end);

% Re−running system dynamics

X = zeros(size(X));
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for i = 1:size(U0,2)
X(:,i+1) = W*X(:,i) + Win*polycomb(Upred(:,i),order);
Upred(:,i+1) = Wx(1:3,:) * X(:,i+1) + Wu(1:3,:) * ...

polycomb(Upred(:,i), order);
end

clf()
%fprintf("Norm of error: %f\n", norm(U1−Upred(:,2:end)));
plot(t(1:time cutoff), Upred(1,1:time cutoff)); hold on;
plot(t(1:time cutoff), UNoise(1,1:time cutoff)); drawnow;
grid on;
xlabel("Time");
ylabel("X(t)");

end

7.6 Running SINDy Algorithm

order = 2;
U = UNoise;
Uvec = zeros(size(polycomb(U(:,1), order),1), size(U,2));

Ytrue = zeros(size(U));

for i= 1:size(U,2)
Ytrue(:,i) = lorenz(Utrue(:,i));

end

for i = 1:size(U,2)
Uvec(:,i) = polycomb(U(:,i), order);

end

Y = guessDeriv;

for i = 1:3
Y(i,:) = sgolayfilt(Y(i,:),1,25);

end

Theta = Uvec'; dXdt = Y';
Xi = Theta\dXdt;

lambda = 0.18;

% lambda is our sparsification knob.
for k=1:25

smallinds = (abs(Xi)<lambda); % find small coefficients
Xi(smallinds)=0; % and threshold
for ind = 1:3 % n is state dimension
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biginds = ¬smallinds(:,ind);
% Regress dynamics onto remaining terms to find sparse Xi
Xi(biginds,ind) = Theta(:,biginds)\dXdt(:,ind);

end
end

Xi = Xi'

norm(Xi*Uvec − Ytrue, 'fro')

approxFunc = @(t, x) Xi*polycomb(x,order);

options = odeset('RelTol',1e−10);
tspan2 = 0:0.01:20;
[t2, Uapprox] = ode45(approxFunc,tspan2,UNoise(:,1), options);

figure()

plot(t2', Uapprox(:,1));
hold on; grid on;
plot(t(1:10000)', Utrue(1,1:10000));
xlim([0 10])
xlabel("Time (s)", "FontSize",15);
ylabel("X−coordinate of Lorenz System", "FontSize", 15);
title(["Regression of Lorenz System with", "SINDy Algorithm"], "FontSize", ...

15);
lgd = legend("Predicted Values", "Ground Truth");
lgd.FontSize = 15;
lgd.Location = "southeast";
ylim([−25 20])

7.7 Direct Method for Computing Noisy Derivative

h = 0.005;
t = (0:h:1)';
n = length(t);
eps = 0.01;
rng(14);
f = abs(t−0.5) + eps*randn(size(t));
%f = sin(10*t) + eps*randn(size(t));
ut = zeros(size(t));
ut(t < 0.5) = −1;
ut(t ≥ 0.5) = 1;
%ut = 10*cos(10*t);

alpha = 1.4e−7;
beta = 0;
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L = tril(ones(n,n)*2);
L = L + diag(ones(n−1,1),1);
L(:,1) = ones(n,1);
L = L(1:end−1,:) * h/2;

D = −diag(ones(n,1)) + diag(ones(n−1,1),1);
D = D(1:end−1,:) / h;

C = 0.5*(diag(ones(n,1)) + diag(ones(n−1,1),1));
C = C(1:end−1,:);
fh = C*f − f(1);

ufd = diff(f) / h; ufd = [ufd; ufd(end)];

u = (alpha * (D'*D) + L'*L + beta*eye(n))\(L'*fh + beta*ufd);

grad = 2*alpha*(D'*D)*u+2*L'*fh+2*(L'*L)*u;

figure()
plot(t, u);
hold on;
plot(t, ut);
ylim([−1.5, 1.5]);
title(["Regularized Total Variation Approximation" "of Derivative"], ...

"FontSize", 15)
xlabel("Time (t)", "FontSize",15);
ylabel("f'(t)", "FontSize",15);
lgd = legend("Regularized Approximation", "True Derivative");
lgd.FontSize = 15;
lgd.Location = "southeast";
grid on;

7.8 L-Plot Formation

alphas = logspace(−10, −2, 100);
costs = zeros(size(alphas));
mags = zeros(size(alphas));

for i = 1:length(alphas)
alpha = alphas(i);
u = (alpha * (D'*D) + L'*L + beta*eye(n))\(L'*fh + beta*ufd);
costs(i) = (fh − L*u)'*(fh − L*u);
mags(i) = u'*(D'*D)*u;

end

figure()
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loglog(mags, costs);
grid on;
xlabel("Magnitude of Second Derivative", "FontSize",15);
ylabel("Antiderivative Error", "FontSize",15);
title(["L−Plot of Error vs. Magnitude Over", "Varying Regularization ...

Parameter"], "FontSize",15);
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